SAR Image Segmentation using Statistical Techniques
نویسندگان
چکیده
Segmentation is performed in recognition applications as a primary step towards extraction of interesting regions of an image. In this paper, the characteristic effects of Weibull and Fractal parameters in the segmentation of Synthetic Aperture Radar (SAR) and Optical images acquired from satellite platform is studied. The algorithms are tested for different window sizes and different number of classes to bring out the effect of these parameters in the segmentation process.
منابع مشابه
SAR image segmentation using Color space clustering and Watersheds
SAR images data are the result of a coherent imaging system that produces the speckle noise phenomenon. Image segmentation is the process of separating or grouping an image into different parts. The good performance of recognition algorithms depend on the quality of segmented image. An important problem in SAR image application is correct segmentation. In this paper, we consider the problem of ...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملSAR image segmentation based on the advanced level set
Image segmentation takes an important role in SAR image processing. In this paper, a SAR image segmentation method based on level set evolution combining edge feature and statistic information is proposed. In order to enhance the impact of edge on image segmentation, all edge values are homogenized according to the calculated ROA operator. Different from traditional method where the SAR distrib...
متن کاملVariational Sar Image Segmentation Based on the G0 Model and an Augmented La- Grangian Method
This paper present a fast algorithm for synthetic aperture radar (SAR) image segmentation based on the augmented Lagrangian method (ALM). The proposed approach considers the segmentation of SAR images as an energy minimization problem in a variational framework. The energy functional is formulated based on the statistical characteristic of SAR images. The total variation regularization is used ...
متن کاملSAR Image Classification by Multilayer Back Propagation Neural Network
A novel descriptive feature extraction method of Discrete Fourier transform and neural network classifier for classification of Synthetic Aperture Radar (SAR) images is proposed. The classification process has the following stages (1) Image Segmentation using statistical Region Merging (SRM) (2) Polar transform and Feature extraction using Discrete Fourier Transform (3) Neural Network classific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011